Spatial mixture modeling of fMRI data.
نویسندگان
چکیده
Recently, Everitt and Bullmore [1999] proposed a mixture model for a test statistic for activation in fMRI data. The distribution of the statistic was divided into two components; one for nonactivated voxels and one for activated voxels. In this framework one can calculate a posterior probability for a voxel being activated, which provides a more natural basis for thresholding the statistic image, than that based on P-values. In this article, we extend the method of Everitt and Bullmore to account for spatial coherency of activated regions. We achieve this by formulating a model for the activation in a small region of voxels and using this spatial structure when calculating the posterior probability of a voxel being activated. We have investigated several choices of spatial models but find that they all work equally well for brain imaging data. We applied the model to synthetic data from statistical image analysis, a synthetic fMRI data set and to visual stimulation data. Our conclusion is that the method improves the estimation of the activation pattern significantly, compared to the nonspatial model and to smoothing the data with a kernel of FWHM 3 voxels. The difference between FWHM 2 smoothing and our method were more modest.
منابع مشابه
Improving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کاملModeling inter-subject variability in FMRI activation location: a Bayesian hierarchical spatial model.
The aim of this article is to develop a spatial model for multi-subject fMRI data. There has been extensive work on univariate modeling of each voxel for single and multi-subject data, some work on spatial modeling of single-subject data, and some recent work on spatial modeling of multi-subject data. However, there has been no work on spatial models that explicitly account for inter-subject va...
متن کاملInvestigating the Effect of Music on Spatial Learning in a Virtual Reality Task
Background: Spatial learning and navigation is a fundamental cognitive ability consisting of multiple cognitive components. Despite intensive efforts conducted with the assistance of virtual reality technology and functional Magnetic Resonance Imaging (fMRI) modality, the music effect on this cognition and the involved neuronal mechanisms remain elusive. Objectives: We aimed to investigate the...
متن کاملFeature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
متن کاملBrain Activity Map Extraction of Neuromyelitis Optica Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis
Introduction: Neuromyelitis Optica (NMO) is a rare inflammatory disease of the central nervous system which generally affecting the spinal cord and optic nerve. Damage to the optic nerve can result in the patient's dim vision or even blindness, while the spinal cord damage may lead to sensory and motor paralysis and the weakness of the lower limbs in the patient. Magnetic Reson...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human brain mapping
دوره 11 4 شماره
صفحات -
تاریخ انتشار 2000